

Department: Biomedical Program

Total Marks: 50 Marks

Faculty of Engineering

Course Title: Biomaterials

Course Code : PDE 393

Level : 300

Date: 12 June 2016 (Second term)

Allowed Time: 2 Hours

No. of Pages: (2)

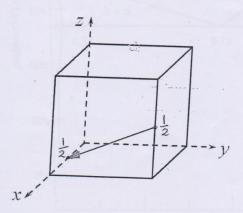
Note: This exam is <u>closed book</u>. No laptops or electronic communication devices are allowed in the exam. This includes cell phones. Calculators ARE allowed (but not on cell phones). You are expected to provide:

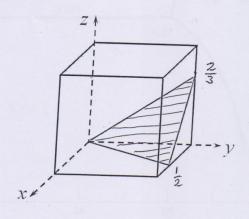
1- Clear explanation of each step of your solution

2- Units

3- Illustrate all answers with sketches whenever possible

4- You have 5 marks over.

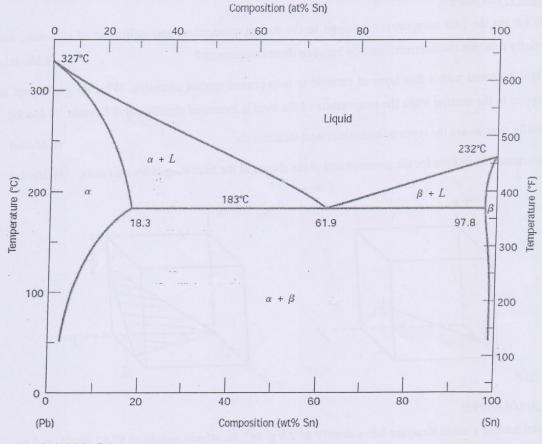

Your grades are subject to these items as well as your calculations.


Question 1: (20 Marks)

- (a) What are the four components involved in the design, production, and utilization of materials, and briefly describe the interrelationships between these components? (4 Marks)
- (b) Steel is coated with a thin layer of ceramic to help protect against corrosion. What do you expect to happen to the coating when the temperature of the steel is increased significantly? Explain. (4 Marks)
- (c) Briefly discuss are the types of ceramic crystal structures?

(6 Marks)

(d) Determine the indices for the direction and plane shown in the following cubic unit cells. (6 Marks)



Question 2: (10 Marks)

- (a) A metal having a cubic structure has a density of 2.6 g/cm³, an atomic weight of 87.62 g/mol, and a lattice parameter of 6.0849 Å. One atom is associated with each lattice point. Examine whether the metal has a BCC or FCC crystal structure.
- (b) Calculate the number of vacancies per cubic meter in iron at 850 °C. The energy for vacancy formation is 1.08 eV/atom. Furthermore, the density and atomic weight for Fe are 7.65 g/cm3 and 55.85 g/mol, respectively. (4 Marks)
- (c) A photomicrograph was taken of some metal at a magnification of 100X and it was determined that the average number of grains per square inch is 16. Compute the ASTM grain size number for this alloy. (2 Marks)

Question 3: (15 Marks)

- (a) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. (2 Marks)
- (b) The diffusion coefficients for carbon in γ -iron are $5.9*10^{-12}$ m²/s and $5.3*10^{-11}$ m²/s given at 900 °C and 1100 °C respectively. Determine the values of D_{θ} and the activation energy Q_d ? Determine the approximate time at 1000 °C that will produce the same diffusion result (in terms of concentration of C at some specific point in γ -iron) as a 30 hours heat treatment at 900 °C. (Note: the gas constant R = 8.31 J/mol. °K)
- (c) Use the given lead tin (Sn-Pb) phase diagram shown in figure to answer the following for an alloy contain 60 wt% Pb 40 wt% Sn: (7 Marks)
 - (i) The liquidus temperature, solidus temperature, freezing range and then draw the cooling curve
 - (ii) What are the phases present and the phase compositions for this alloy at 200 °C?

Question 4: (10 Marks)

- (a) Briefly discuss the main applications of biomaterials? (3 Marks)
- (b) There are two major types of artificial hip joint cemented and uncemented joints. Briefly discuss the advantages and disadvantages of the uncemented joints? (4 Marks)
- (c) What is the difference between composite and FGM? (3 Marks)